
profiles of the free surface it is possible to ascertain the nature of streamlining for vari- 
ous bodies: under which conditions a given body allows representation by point poles, the 
determination of their orders and position, as well as under which conditions the "point" 
representation is violated. For example, we can study the case of the streamlining of a 
cylinder which is traditionally simulated by a point dipole. The streamlining potential 
for a solid is not an additive quantity [7], so that in the case in which the cylinder is 
in motion in the immediate vicinity of the free surface its influence is therefore signifi- 
cant, so that it s possible to assume that the potential of the dipole ceases satisfac- 
torily to describe the streamlining of the cylinder. In view of the stability of the pro- 
posed method the vanishingly small errors in the measurement of the input data (the surface 
profile) introduce vanishingly small errors into the solution, i.e., the substitution of 
similar problems in the context of the proposed approach is valid. 
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THE EVOLUTION OF WEAKLY LINEAR PERTURBATIONS 

IN A PLUG FORMED OF AN AIR-WATER MIXTURE 

S. I. Lezhnin, I. I. Mullyadzhanov, V. E. Nakoryakov, 
B. G. Pokusaev, and N. A. Pribaturin 

UDC 532.529 

Various flow regimes arise in the motion of gas and vapor mixtures combined with liquids 
(a bubble flow, a plug-type flow, a rodlike flow, etc.), and these various types of flows 
are distinguished on the basis of their hydrodynamic and gasdynamic characteristics. At 
the present time, the formation and propagation of pressure waves in a mixture of a liquid 
with gas bubbles have been studied rather thoroughly, both from the theoretical and experi- 
mental standpoints. As regards the plug-type regime of flow in a gas-liquid mixture, exis- 
ting information [1-4] is insufficient to comprehend the entire pattern involved in the pro- 
cess of wave formation. Initially, the model for the propagation of pressure waves was pro- 
posed independently in [3, 4], where it was assumed that the propagation of a wave in such 
a medium comes about as a result of inertialess compression and expansion of the gas plug 
and through the transfer of momentum to the liquid plug. It was demonstrated in [3, 5] that 
the mathematical description of the evolution of the waves is reduced, as in a bubble medium, 
to an equation of the Korteweg-de Vries type, and here we find also a hypothesis dealing 
with the possibility of forming pressure waves in such a medium, where the shape and quanti- 
tative relationships for the propagation of these waves are identical to those that prevail 
in a gas-liquid bubble mixture. 
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In the present paper we present a theoretical and experimental study of the formation 
and propagation of weakly linear (Ap0/P0 < i) perturbations in pressure within a real (pro- 
vision having been made for the aperiodicity of structure and phase slippage) gas-liquid 
mixture exhibiting a plug-flow structure. 

Let us examine the unilateral propagation of a finite-duration low-amplitude pulse AP0/ 
P0 < 1 (P0 is static pressure). Based on theoretical estimates [3], the velocity of propaga- 
tion for a pulse through the plug flow of a two-phase mixture must be determined by means 
of the same formula as for a bubble mixture: c0 = [yp0/p1~(l _~)]i/2 (y is the adiabatic 
exponent of the gas, and ~ is the volumetric gas content of the mixture). We will specify 
the initial width of the pulse L = c0t 0 and its initial amplitude AP0. Here we will examine 
the wave for which L > s (s is the length of the two-phase cell of the plug formed by the 
liquid and a gas. If we introduce the dimensionless parameters �9 = tc0M/L, M = (T + 
l)Ap0/2yp0, n = x/L, p* = Ap/Ap0, then, as was demonstrated in [5], the evolution equation 
for waves in a gas-liquid plug-flow mixture is identical in form as for the case of a mix- 
ture of a liquid with gas bubbles: 

@p* @p* n,~~p * t asp * 
a-?+ ~+ ~ ~-+ =0 (i) 

~o ~ a~ 8 

[02 = M(24L2/s o, M are dimensionless criteria of similarity]. 

It was noted in [3] that a unique feature of plug-type flow is the appearance of three- 
dimensional dispersion in the propagation through that flow of perturbation in pressure. 
The limit signal-propagation frequency 2m 0 = 2c0/s = 2[yp0/pls - ~)]I/=. It follows 
from a comparison of the resonance frequencies ~0 for a bubble medium [2] and for ~ plug- 
type mixture that the characteristic pulsation frequencies in wave propagation through the 
mixture under consideration must be low in value (on the order of several tens of hertz, 
and in the case of a bubble stream, on the order of kilohertz). Knowing these criteria, 
it is easy to determine the paths along which the initial perturbation develops. Estimates 
show that for a plug regime in tubes with a diameter from 8 to 30 mm the value of o is small 
and the contribution of the dispersion effects to the formation of the pressure wave is con- 
siderably greater than in the case of a bubble flow regime. 

From the standpoint of an experimental verification of the theoretical model for wave 
propagation, the shock-tube method proves to be most convenient. In our studies these ex- 
periments were conducted in a tube with a vertical working section 25 mm and 8 mm in diameter 
with a height of 2.5 m and 0.8 m, respectively. Here the two-phase medium plug structure 
was formed through the periodic supply of a specific amount of gas into the working section 
in conjunction with a nonmoving liquid for which distilled water was used. Such a method 
of introducing the gas enabled us to obtain a pure plug structure (without gas bubbled in 
the liquid slug), exhibiting regulated characteristics (~ = 0.1-0.7, s - i-i0, s is 
the initial length of the gas plug and D represents the diameter of these plugs). We should 
note that it is all the more difficult to increase the velocity at which these plugs move 
(to increase ~i), the greater the diameter of the channel. Under certain conditions associ- 
ated, as was demonstrated in [i], with agitation of the liquid, each plug enters the wake 
of the previous plug and depending on buoyancy overtakes the earlier plug and merges together 
with it. For the experiments with a channel 25 mm in diameter, the maximum attainable values 
of the gas content were 0.3-0.4. The pressure waves are generated by the opening of an elec- 
tromagnetic valve separating the high-pressure chamber from the low-pressure chamber. The 
required duration of perturbation (15-500 msec in our experiments) was achieved by opening 
the valve for a specific time interval. The amplitude of the initial wave varied in the 
range (0.015-3.1)p0 by changing the pressure within the high-pressure chamber of the s~ock 
tube. Thus, the criteria o and M were varied in the experiments. The propagation of the 
pressure perturbations through the two-phase medium were recorded by piezoelectric pressure 
sensors. The content of gas and the dimensions of the plug were measured by a time-passage 
method for which two photodiodes were used, the latter mounted at a distance of 30 n~n from 
each other. The experimental installation was controlled and the collection and processing 
of data were all accomplished with an "Elektronika-60" computer with an expanded KAM~com - 
plex (ADC, a switching unit, a timer, and a counter). 

Figure i shows the velocities of the weak compression waves (Ap0/P0 < i) as a function 
of ~. Points i and 2 correspond to experiments with D = 8 and 25 ~n, while line 3 repre- 
sents the calculated relationship between c o and ~ for an ideal structure. At D = 25~ 
the maximum~ = 0.14, and here a stable flow regime exists. No provision was made i~ our 

921 



c ,  
m/sec 

JO 

20 
0 

of 

,\ I 

% 

o,2  o , 4  o,r ~ ;o 

Fig. 1 

~ ~ ~ . .  x=0,,7,~ m 

Fig, 2 

o,2 ;7" 

~/' 7o 

I 

5 fO /5  2 0  t, msec 

Fig. 3 

=/a ..~__ Pa az= O~ 0 5  m 
a 

O~ O/-I I u % 

/~ ~i o..f m 

~=O,O$ m 

O, 

I I I I I f " "  

0 fO 20 30 ~ ~, msec 

Fig. 4 

installation for the possibility of varying the scattering in the plug lengths. At the same 
time, with steady-state plug flow in a tube with D = 8 mm we had a considerably smaller dis- 
persion in the distribution of plug lengths (6s = 0.5 mm with ~20 = 50 mm) in comparison 
with a tube for which D = 25 mm (6s = 15 mm when s = 50 mm). The deviation of the velo- 
city of propagation for the weak compression waves in the case of D = 25 mm from the value 
of c o is in rather good agreement with the calculations presented below [relationship (21)], 
in which provision is made for the influence exerted by dispersion on the distribution of 
plug lengths. 

Measurements of the propagation velocity for small perturbations showed that the results 
were independent of the plug length for the same ~. When the two-phase medium is acted on 
by a high-frequency perturbation exhibiting the characteristic frequencies that are larger 
than the resonance frequency of the plug, we observed no advance indicators moving through 
the mixture at a velocity greater than c o . In this case, the first gas plug appears, how- 
ever, as a shield against the high-frequency perturbations. 

Results from a synchronous recording of the oscillations in two adjacent plugs provide 
a clear representation of the formation of a pressure wave in such a medium (Fig. 2, Ap0/pD = 
0.5, ~ = 0.3, s = 40 mm, D = 8 mm) and the pressure wave that arises in the vicinity of 
the gas plug is shown in Fig. 3. We can see from Fig. 2 that the oscillations of the two 
adjacent plugs occur with a phase shift relative to one another. The behavior of the air 
plug in the pressure wave is nearly adiabatic, i.e., P2 = P0(s (Fig. 3, line 1 repre- 
sents the calculation, while 2 represents the profile of the pressure in the wave; the circles 
identify the behavior of the plug in the experiment, ~0 = 60 n~, D = 25 mm). This is quite 
natural here, since the characteristic time required to equalize the temperature within a 
plug of diameter D and with a thermal gas diffusivity is expressed as a2~ = D2/4~a2 = 2 sec. 
However, in the general case of analyzing the wave dynamics we must examine the possible 
heat losses. For a plug-flow regime this involves, first of all, the exchange of heat be- 
tween the gas and the liquid and between the liquid and the wall. If the thickness of the 
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liquid film between the plug and the wall of the channel is extremely small, and if the wall 
of the channel exhibits slow thermal conductivity, the condition of temperature constancy 
for the gas may be disrupted. In the solution of the internal thermal problem in a gas plug, 
unlike a bubble, substantially convective flows may exist. 

Even without taking these into consideration, the characteristic time required to equa- 
lize the temperature in the plug is small and comparable to the duration of the wave front. 
Thus, in the case of a helium plug in a tube with D = 8 mm, T = 0.03 sec. 

Let us examine the propagation of a pressure pulse in the plug-flow regime of an air- 
water stream. As we can see from Fig. 4 (~ = 0.18, D = 25 mm, s = 65 mm), the structure 
of the pressure waves which arise in the medium indeed depend both on o and M. Just as in 
a bubble regime for a two-phase mixture, there exists such a value of o = o,, governed by the 
form of the initial perturbation (for example, for perturbations Gaussian in form, i.e., 
o, = 3.1, or for a triangular wave with o, = 13.1), beneath which a steady-state wave packet 
is formed (Fig. 4a, o = 2.9). With o = 7.4 (in our experiments o, = 6) a soliton forms in 
the medium (Fig. 4b) whose shape is described by the expression Ap = APmsech 2 (x/6), 6 = 
s + 1)/u -I/2. The amplitude of the soliton is kept virtually constant (in the 
case of nitrogen plugs) over the entire length of the working section (Fig. 5, D = 25 mm, 

= 0.16, s = 58-68 mm, o = 6.5). On the other hand, if we are dealing with a gas capable 
of greater heat conduction, such as, for example, helium, then on the basis of that which 
was stated earlier, in the propagation of the wave we have a reduction in its amplitude, 
which can be seen clearly in Fig. 5. Figure 4c (o = 27) illustrates the fact that when o > 
o, the initial perturbation evolves in the form of a nonlinear wave with an oscillating trail- 
ing front. 

Let us take a look at the propagation of a shock wave (SW) in a medium. As we can see 
from Figs. 2 and 6 (line 2, P0 = 10s Pa,~ = 0.18, s = 60 mm, D = 25 mm), in the region 
of the gas plugs the measured pressure profile exhibits an oscillating structure. For weak 
waves Ap0/P0 ~ 0.2 the oscillation frequency corresponds approximately to the resonance fre- 
quency w0, while the width of the leading front corresponds to half of ~0. With an increase 
in the intensity of the wave the width of the leading front is diminished, primarily as a 
consequence of the appearance of nonlinear effects. The amplitude of the SW increases with 
an increase in the initial intensity of the wave and with Ap0/P0 > 0.5 may exceed the initial 
intensity by a factor of 1.4 (Fig. 7, points i, P0 = 105 Pa, ~ = 0.2, s = 60 mm, D = 25 
mm). The velocity of the SW corresponds well to the familiar expression u/c 0 = 1 + (7 + 
l)Ap0/P0. In an air--water mixture the SW, fixed within the region of gas plugs, retains 
its parameters over the entire length of the working section (for D = 25 mm and H = 2.5 m, 
H is the length of the working section). In the plug-flow structure of the two-phase mix- 
ture, since we are dealing with a discrete spatial distribution of liquid and gas, it is 
quite natural to expect differences in wave shape within a single two-phase cell such as 
that formed by the gas plug and the liquid slug. Since two adjacent plugs oscillate with 
a shift in phase (see Fig. 2), and the pressure within the liquid plug separating these plugs 
changes linearly along the slug, from the pressure value within a single plug to the pressure 
values in the other, the oscillation in pressure within the liquid slug will be less clearly 
defined than in the gas plug. As we can see from the experimental results shown in Fig. 
6 (curve 3), the SW fixed in the liquid slug oscillates weakly, and its maximum magnitude 
virtually coincides with the pressure in the incident wave (Fig. 7, points 2). 
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It follows from the experimental results presented that the fundamental positions of the 
mathematical model, based on an idealized scheme [3], have been confirmed experimentally. 
However, in a real flow the gas plugs do not occupy the entire cross section of the tube 
and, moreover, in a chain of such plugs their dimensions are not kept constant. Before we 
compare the experimental and theoretical results, we have to clarify the question as to the 
influence exerted by the "nonideal" structure on the wave characteristics. If we treat the 
gas as an ideal gas with an adiabatic exponent X, we can neglect the friction of the liquid 
against the channel wall, as well as the interphase heat exchange, and thus we can write 
the equation of motion for the n-th liquid slug and the equation of state for the n-th gas 
plug, as follows: 

PllL~ ~ = P~ - -  P~+I;  ( 2 )  

p~ = p (0) 1 + z . - -  zn_  ~ ~ z2,n_ ~ 
12,n 

In a real flow, since the length of the plugs and the liquid slugs fluctuate about a 
mean value, we can represent ~i,n and ~,n in the following form: 

zl,,` = (i - ~)z(i + ~,`); ( 4 )  

I~,,` = r  + ~ )  ( 5 )  

( a n ,  Sn a r e  t h e  d i m e n s i o n l e s s  s m a l l  r a n d o m  q u a n t i t i e s  w i t h  a n  a v e r a g e  z e r o  v a l u e  a n d  ~ i s  
the value of the volumetric gas content averaged over the entire length of the plug structure). 

We have adopted the following model: an, ~n are random quantities independent with 
respect to the natural argument n, with a zero correlation radius: 

o:,~k = cz~8~, 1~,,~ = 13~8,`h, o : ~  = 0. (6) 

In order to determine the change in the fundamental characteristics of the signal as 
it is propagated through a real mixture, we will derive the corresponding wave equation. 
From system (2)-(5) we obtain a chain of difference equations 

d2 I [@n+1 + 8"n-i 2+~+ ] v + t - 8  ~ @ ~  Ctn--1 �9 ( 7 )  
--d~ ~ @,`- 2~7(P~lJ=(1+~n)-1[~-TTr ~n-1+~ (~+~)(~-~-0 

It follows from this that if in the fluctuations of the dimensions of the plug and the liquid 
slug the overall length of the cell is retained, then the frequency of the signal will not 
change. The pressure perturbation 5pn is represented as the sum of the long-wave averaged 
component Pn and the random component Pn', whose value may change significantly when n changes 
by unity. Here Pn' << Pn, since an, Sn << i. In the following we will examine only the evolu- 
tion of the low-frequency perturbations (m << m0). Expanding Eq. (7) over the small parameters 
an, Sn and averaging it over n, with consideration of (5) accurate to second-order terms 
of smallness, we will obtain 

- -  ~ (~,,)~ = (>n+~ - -  2>,, + ~ n - 0  (~ + ~ + P~) - -  ( 8 )  

i ,"  i 

- -  pn (r + p.)  + Pn (2~n + an + r - -  Pn-~ (r + ~ n) 

for the averaged quantity Pn, 

d~ ' ' 2 ' ' d,r---~ Pn  --- Pn+1 - -  Pn  Jr P n - 1  - -  ~n (Pn+l  - -  ( 9 ) 

- 2>,` + - L , - O  + o:,, G , ,  - -L ,+O - o:,`-1 (~,,  - - L , - O  

for the random component Pn'' In the solution of the linear nonuniform equation (9) we find 
the unknown quantities Pn" Substituting (9) into (8) and carrying out the averaging opera- 
tion, we are left with a single equation for the function Pn" By means of the Fourier trans- 
form over time, we can present relationship (9) as follows: 

r t t 

Pn+~ - -  (2 - -  (o 2) p.~ + P ~ - I  = A,~. (lo) 
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It is easy to find the particular solution of Eq. (i0): 

+ ~  sin (n - -  m) , sin (n, - -  m)  �9 A m  - -  ( t  - -  %) ~f Am 
p n  - -  Z sin ~" sin'{' 

~2 = 4 sin 2 (~/2), X is an arbitrary constant. 

From formulas (6) and (i0) we obtain 

p ' . l %  = o ,  p',,o~,, = xo~=(p=+, - p . ) ,  p , , a , , _ ,  = (I - z )  o~=(p._~ - p , , ) ,  

P . - ~  n-1 -= Z (z= (-P,~ - -  -Pn-J,  P n - a ~  = X[ ~ ( - -  Pn+, + 27,~ Pn--,), 

p,~+ZtZ,~ = ( t  - -  Z) r (Pn - -  P,~+J, p . + a [ ~ .  ----- 

(11)  

Since m, ~ << i (low-frequency perturbations), in the averaging we took the kernel sin [(n - 
m)~] and Pn to be constants. Substituting (ii) into (8), we find 

Just as in [3], for the transition from the discrete argument to the function of the continu- 
ous argument, we will use the mathematical model of a quasicontinuum [6]. The differential 
equation corresponding to system (12), for the function of the continuous argument in the 
long-wave approximation, will then be written in the form of the Boussinesq equation 

12 

I t  f o l l o w s  f rom t h i s  t h a t  w i t h  an " a p e r i o d i c "  p l u g  s t r u c t u r e  f o r  t h e  f low t h e  waves w i l l  
p r o p a g a t e  a t  a v e l o c i t y  g r e a t e r  by a f a c t o r  o f  ~1 + 2~ 2 + 2~ 2 t h a n  in  t h e  c a s e  o f  a " p e r i o d i c "  
s t r u c t u r e  e x h i b i t i n g  t h e  same v o l u m e t r i c  gas  c o n t e n t .  

The f o l l o w i n g  c o r r e c t i o n  f a c t o r  t o  t h e  model ,  under  c o n s i d e r a t i o n  h e r e ,  o f  t h e  p r o p a g a -  
t i o n  o f  weak waves i s  a s s o c i a t e d  w i t h  c o n s i d e r a t i o n  o f  t h e  t h i n  l i q u i d  f i l m  s u r r o u n d i n g  t h e  
gas p l u g .  For  a v e r t i c a l  f low t h e  e x i s t e n c e  o f  such  a f i l m  l e a d s  t o  t h e  deve lopmen t  o f  a 
d i f f e r e n c e  in  t h e  a v e r a g e  v e l o c i t i e s  o f  l i q u i d  and gas  m o t i o n ,  which must  p r i m a r i l y  a f f e c t  
t h e  change  in  t h e  v e l o c i t i e s  o f  p r o p a g a t i o n  f o r  t h e  p e r t u r b a t i o n s .  S i n c e  c o n s i d e r a t i o n  o f  
phase  s l i p p a g e  l e a d s  t o  complex n o t a t i o n  o f  t h e  e q u a t i o n  o f  mo t ion  ( 1 ) ,  t h e  f u n d a m e n t a l  f e a -  
t u r e s  in  t h e  changes  f o r  t h e  q u a n t i t a t i v e  r e l a t i o n s h i p s  g o v e r n i n g  t h e  p r o p a g a t i o n  o f  a wave 
can be a n a l y z e d  t h r o u g h  t h e  L a g r a n g e  f u n c t i o n .  

We will assume that because of the limited density of the gas (insignificant pressure 
gradients along the plug) during the propagation of the wave the average velocity and film 
thickness e, averaged over the cross section of the film, do not change [6 = (S - S')/S = 
const (Fig. 8)]. We will denote the displacement of the right-hand boundary of the liquid 
slug by ~n and with <n we denote the displacement of the left-hand boundary of the liquid 
slug, and v n denotes the velocity of the flow in the n-th slug, with w n denoting the velo- 
city of the liquid in the n-th film along the n-th plug. Using a mechanical analogy [3], 
we will write the Lagrange function of the system 
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t +  ) (13) 

(mn = PISs [I + ($n - <n)/s ] is the mass of the film in the n-th plug). Using a cylinder 
to simulate the gas plug~ from the condition of continuity for the liquid phase we find the 
relationship between g, <, v, w. 

Turning to a system associated with the motion of the interphase boundary, we obtain 

v. - -  ~. = O(w= - -  ~.): (14) 

Subt rac t ing (16) from (14) and sub t rac t i ng  (14) from (16) we ob ta in :  

(i5) 

(i6) 

v n = v._, -~ ( i  - -  0)(~ n - -  ~.-0;  (17) 

We have earlier made the assumption that the velocity of the liquid in the film does not 
change in the wave process (w n = w 0 = const). Consequently, from (18) we have ~n = Sn, 
Sn = <n (the mass of the slug does not change). Using formula (17) as a recursion formula, 
we write v n = v_= + (I - 8)($ n - ~_~). The Lagrange equation (13) is presented in the form 

n 

i+ j2 z T / �9 

(i9) 

The equation for the dynamics of the mechanical system exhibiting the Lagrange function 
~($n, ~n) is well known: 

Assuming that v_= 
we find 

p l q Z  (i - -  O) ( ~ + i  - -  2~n + ~--I). 

By turning to the continual analog of this equation we determine the velocity of propaga- 
tion for the perturbations 

= ~_~ = 0 and examining the small perturbations, from (19) and (20) 

g = 1/YPo(q+ ,) 
I/p~ql~ (i-o) =co(i--O) -~/L 

With consideration of the aperiodicity of the structure 

c, __ Co(i + ~2 + ~ + 0/2), (21) 

The value of c o ' is greater by a factor of approximately 3% than the value of c 0 calcu- 
lated without consideration of the presence of a liquid film. This addition is small in 
comparison with the change introduced due to the scattering in the plug lengths, and in ex- 
periments with water it has not been established. We note that in the case of a water- 
glycerine solution (~ = 0.9"10 -3 m=/sec when T = 293 K) e = 0.2 and the contribution from 
the effect of the liquid film on c o ' reaches =11%. The increase in the wave velocity due 
to various plug lengths amounts to 18% (points 2 in Fig. i), which is within the scope of 
the values of c, (Fig. i, line 4), determined from formula (21). 

Thus, in the calculations of wave evolution we can use Eq. (i) with the corresponding 
correction factor for c o . Equation (i) was calculated on the basis of the difference scheme 
proposed in [7]. The profile of the initial pressure perturbation served as the initial 
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conditions. The theoretical values for the pressure waves were determined at distances cor- 
responding to the locations of the pressure sensors in the experimental installation. As 
we can see from Fig. 4 (the dashed line represents the theoretical values), the agreement 
between the experimental and theoretical results is satisfactory. 

The structure of the SW in the region of the gas plug can be calculated on the basis 
of the Burgers-Korteweg-de Vries model. Unfortunately, we currently have no model which 
allows us adequately to calculate the coefficient of effective viscosity in the plug-flow 
regime of a two-phase mixture. If we formally extend the results from the analysis of the 
SW in a bubble flow [2] to plug flow (apparently this is possible since the pressure pulses 
in this medium evolve in the same manner as in a mixture of a liquid with gas bubbles), 
(i/Re)(82p*/SD 2) must be added to the left-hand side of Eq. (i) (Re contains only the kine- 
matic viscosity v). Proceeding in the same manner as in the case of a mixture of liquid 
and gas bubbles, we can find some critical value of v, = [(s ~ + i))] z/2 . 
On fulfillment of the condition v < ~, in the medium an oscillating SW must appear. From our 
evaluations it is evident that the condition is always valid for a plug-flow regime. Calcu- 
lation of the SW on the basis of the BK-dV equation with ~ = 10 -6 m2/sec is illustrated in 
Fig. 6 (line 4). 
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